Formal Specification and Analytical
Verification

Presented by:
John D. Powell

L5 Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 1

Contents

B What is Formal Methods?

B Formal methods concepts

B A simple formal methods example

B The “method” underlying formal methods
m Process Considerations

m The “method” of Formal Methods

B Limitation and Cautions

B Summary

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 2

What 1s Formal Methods?

m Tools and Techniques based on formal logic and mathematics to
specify and verify systems, software, and hardware
m Specification
» A precise “abstract” mathematical model of a component’s specification
~ Symbolic Manipulation vs. Arithmetic Execution
» Formal methods help debug requirements & design specifications
m Verification |

» Complement empirical methods such as traditional testing

» Fidelity between code and formal models can be checked via test scenarios

~ Model checking component can generate counterexamples and help form
equivalence classes for testing

LS Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 3

What 1s Formal Methods?
nued)

n he applicatin of foral methods can include the
following techniques:

» Formal Specifications allow the rigorous capture of the abstract
‘model

~ Abstraction separates the central characteristics from irrelevant
details

» Amnalytical Verification can prove properties exhaustively in
models
— Model Checking and/or Animation
- Exhaustive state exploration of abstract model
« Inductive analysis
— Proofs

« Deductive analysis

L5 Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 4

Formal Methods

' Abstraction Formal Model Formal

E Specifications Checking Proofs

. ____Formal Specification | Analytical Verification
L5

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 5

B Simplify and ignore irrelevant details

m Focus on and generalize important central
properties and characteristics

‘W Avoid premature commitment to design and
implementation choices

L4
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 6

m Translation of a non-mathematical |
description (diagrams, tables, English text)
into a formal specification language

m Concise description of high-level behavior
and properties of a system

m Well-defined language semantics support
formal deduction about specification

L4

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 7

Model Checkmg

u Operational rather than analytic

m State machine model of a system is expressed in a
suitable language

B Model checker determines if the given finite state
machine model satisfies requirements expressed as
formulas in a given logic |

B Basic method is to explore all reachable paths in a
computational tree derived from the state machine
model

L4
Introducing Formal Methods, Module I, Version 1.1, Oct., 1998 §

Formal Proofs

B Complete and convincing argument for validity
of some property of the system description

m Constructed as a series of steps, each of which
1s justified from a small set of rules

B Eliminates ambiguity and subjectivity inherent
when drawing informal conclusions |

B May be manual but usually constructed with
automated assistance

L4
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 9

Written Requirement

Informal requirements expressed in English:

B A tank of cooling water shall be refilled when its low
level sensor comes on. Refilling consists of adding 9
units of water to the tank.

m Notes:
> The maximum capacity of the tank is 10 units of water.

> From one reading of the water level to the next reading of the
water level, 1 unit of water will be used.

> The low level sensor comes on when the tank contains 1 unit
of water or less.

[NASA-GB-002-95] Introducing Formal Methods, Module I, Version 1.1, Oct., 1998 10

Assigning Types

m The above statement contains several descriptions, including two key notions:
the water level in the tank and the water usage. Formally, these notions can be
modeled as follows (statements 1 and 2):

1 level is represented by a restricted integer type: a
number between 0 and 10, inclusive

2 usage is represented as the integer constant 1

m That is, level describes an amount of water that the tank may hold at any point in
time and usage describes the amount of water used during one cycle.

[NASA-GB-OOZ-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 11

Function Description

B The primary requirement is that 9 units of water will be
added to the tank whenever the level is less than or equal
to 1. This can be more precisely stated as (statement 3):

3 Function fill takes, as input, a water level and returns,
as output, a water level. Given an input of L units of
water, fill returns L+9, if L is one or less, otherwise it
returns L. |

m That is, we claim that fill(I) accounts for any filling of
water 1n the tank.

[NASA-GB-002-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 12

Properties

B A common sense property of this system 1s that, at
the next cycle, the new water level will be the
current water level, plus any amount that was
added, minus the amount that was used. That 1s,
given L as the current level of water, the level at
the next cycle should be given by statement 4:

4 level = L + fill(L) - usage

[NASA—GB—002-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 13

Properties (continued)

B One approach to checking this specification is to ensure that each reference to a
level of water is consistent with the definition of level, i.e., it should always be a
number between 0 and 10. It turns out that the specification for fill given in 3
above is consistent with the definition of level if the following two logical
statements are true:

5 FORALL levels L
(L <= 1)IMPLIES THAT
(0 <=L+ 9)AND
(L+ 9<=10)

6 FORALL levels L
(0 <=L + fill(L) - usage) AND
(L + fill(L) - usage <= 10)

[NASA-GB-002-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 14

nalysis by Proof™

m The following statements (statements 5.1 and 5.2) constitute an
informal proof that the first FORALL statement (statement 5) 1s true:

m Property: “5” FORALL levels L (L <= 1) IMPLIES THAT
(0 <=L+ 9)AND (L + 9 <= 10)
m Proof:

5.1 L+9 >= 0 because L >= 0 (and the sum of any two numbers greater
than zero is greater than zero)

5.2 L+9 <= 10 because L <=1 (and any number less than or equal to 1 plus
9 is less than or equal to 10)

[NASA'GB-002-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998

15

Why Can’t I Get the Prover to
Verity Property #67

m Property “6” FORALL levels L
(0 <=L + fill(L) - usage) AND
(L + fill(L) - usage <= 10)

B Proof Attempts Fails!

m Counter-example™

» Consider the case when L is 9:
L + fill(L) - 1 =L4L-1=949-1 =17 (which is not <= 10)
B The specification is flawed and must be corrected.

[NASA-GB-002-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998

16

Correcting the Specification

m Upon closer examination, it is found that statement 4, our expression
for the water level at the next cycle, is in error:

4 level = L + fill(L) - usage (incorrect)

m This statement is inconsistent with the definition of fill because fill
returns the new level of water, not just the amount of water added.
The (corrected) expression for level, denoted by 4’, is simply:

4’ level = fill(L) - usage (correct)

B The (corrected) FORALL statement (statement 6) is:
6° FORALL levels L:
(0 <= fill(L) - usage) AND
(fill(L) - usage <= 10) (correct)

[NASA-GB-OO2-95] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 17

This Simple Example Illustrates:

m Formal Specification: Modeling informal English statements
using mathematical expressions

B Type Checking: Checking that all types of items are used
consistently (e.g., level)

m Stating Properties: Identifying and defining expected behavior of
the system (e.g., the expected new level in the tank)

B Proving Logical Conditions: Constructing logical proofs which
show that a given condition holds under all possible situations

[NASA-GB-002-95]

Introducing Formal Methods, Module 1, Version 1.1, Oct.,, 1998 18

The preferred type of analysis and method is
strongly influenced by the project objectives

Modest e 9

(e.g. formal
specifications for
increased precision)

Moderate —=——
(e.g. early defect

detection)

(e.g. assure correctness of
critical properties or

algorithms)

Introducing Formal Methods, Module I, Version 1.1, Oct., 1998 19

L4

Levels of Rigor in the Application of
Formal Methods

spectrum of rigor most rigorous
< >

Mathematical concepts and Formal specification languages,
notation, informal analysis ¢ comprehensive tool environment,
(if any) including automated proof

--- relatively low cost checker/theorem prover

-- higher cost
. -

require automated tools

modeling to capture formal specification fully formal specification
logic and discrete language - type, syntax, language with rigorous
mathematics model checking, deductive analysis support

animation, etc.

L5
Introducing Formal Methods, Module 1,- Version 1.1, Oct., 1998 20

The “Method” Underlying Formal Methods

m The Characterization Phase: Synthesize a

thorough understanding of the application and the
application domain.

» Thorough study of the application

» Identify and study related work
» Acquire additional knowledge as needed

» Integrate the accumulated knowledge into a working
characterization of the application

[NASA'GB‘001'97] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 21

The “Method” Underlying Formal Methods
(cont.)

B The Modeling Phase: Define a mathematical
representation suitable for formalizing the
application domain and for calculating and
predicting the behavior of the application in that
context.

» Evaluate potential mathematical representations in the
context of the underlying formal language and tools

» Select the most suitable mathematical representation

» Model key elements of the application and their
relationships

[NASA-GB-001-97] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 22

The “Method” Underlying Formal Methods
(cont.)

B The Specification Phase: Formalize relevant aspects of
the application and its operational environment.

» Develop a specification strategy, considering such
factors as hierarchical (multilevel) versus single-level
specification, constructive versus descriptive
specification style, procedural and organizational issues
(such as developing reusable theories and common
definitions), and specification chronology

» Using the chosen model and specification strategy,
compose the specification

» Analyze the syntactic and semantic correctness of the
specification

[NASA-GB-001-97] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 23

The “Method” Underlying Formal Methods
(cont.)

m The Analysis Phase: Verity the specification.
Including a subset of the following analysis
techniques: |

» Interpret or execute the specification
» Run high level scenarios on the animation
» Run model checker

>

A\

Prove key properties and invariants

>

Vv

Establish the consistency of axioms, if any
» Establish the correctness of hierarchical layers, if any

[NASA‘GB'001‘97] Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 24

The “Method” Underlying Formal Methods
(Cont.)

B The Documentation Phase:

» Record operative assumptions, motivate critical
decisions, document the rationale and crucial insights,
provide explanatory material, trace specification to
requirements (high-level design), track level of effort,

-and where relevant, collect cost/benefit data.

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 25

Process Cons1derat10ns

Development process should be “healthy,

specifically, the process should have:
» well defined phases
» work products defined for each phase
» analysis procedures in place for work products
» scheduled review and v&v of work products

Healthy — good candidate for formal methods
Process <

Weak Process — not a good candidate, likely more
& Project is in benefit from process improvement
trouble measures

L4
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 26

Placement of Formal Modeling and
Analysis in a Development Lifecycle

Why does this course focus on software

requirements and design rather than code?

B The highest density of major defects found through the use of
software inspections was during the requirements phase. This
was several times higher than the density of major defects
found in code 1nspections [Kelly92]

M Most hazardous software safety errors found during system
integration and test of two NASA spacecraft were the result of

requirements discrepancies or incorrect interface specifications
[Lutz93] |

- L5 Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 27

Defects and Cost to Correct

Earlier detection of defects 1s essential for
complex projects

4 Cost to correct

. . . 4>
Time in life cycle when

defect 1s discovered

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 28

L5

[.imitations to Formal Methods

m Used as an adjunct to, not a replacement
for, standard quality assurance methods

B Formal methods are not a panacea, but can
increase confidence in a product’s reliability
if applied with care and skill

m Very useful for consistency checks, but can
not assure completeness of a specification

L5

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 29

Cautions in the Use of Formal Methods

m Judicious application to suitable project
environments is critical if benefits are to
exceed costs |

m Formal methods and problem domain
expertise must be leveraged to achieve the
best results

L5 Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 30

by Mlcroprocessor & Computer Companies

m Intel’s Merced Project (Intel's next-generation
miCroprocessor)

m National Semiconductor (VLSI design technologies to
support advanced products)

m Hewlett-Packard (definition, design & verification of mid-
range computer servers and high-end workstations)

B IBM (verification tools to support processors and systems)

B Texas Instruments (verification technologies and
methodologies to support TT's design activities)

L5

Introducing Formal Methods, Module 1, Version 1.1, Oct,, 1998 31

B Formal methods include a number of
- concepts/methods

» Abstraction

» Formal specifications
» Model checking
» Formal proofs

‘B Formal methods can be applied at various
levels of rigor

L5
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 32

L5

B Formal methods should be employed in a healthy
development environment

m The five step “method” for performing formal
analysis 1s: Characterization, Modeling, Specification,
Analysis, and Documentation)

B Formal Methods is not a substitute for other QA
activities

B Formal Methods be used judiciously in the proper
domain

Introducing Formal Methods, Module I, Version 1.1, Oct., 1998 33

Select Resources

B SRI International Computer Science Laboratory
» http://[www.csl.sri.com/sri-csl-fm.html

B Furman University - Formal Methods
» http://s90()O.furman.edu/FM/

B Bell Labs - SPIN Model Checker
» http://netlib.bell-labs.com/netlib/spin/whatispin.html
m Formal Methods Virtual Library

» http://www.comlab.ox.ac.uk/archive/formal-methods.html
B Formal Methods Europe
» http://www.csr.ncl.ac.uk/projects/FME/index.html

Introducing Formal Methods, Module 1, Version 1.1, Oct.,, 1998 34

Backup (BU) Slhides

Model Checking Details

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 35

BU1 - Finite State Models and State (\
Space [NasA

u System state can be modeled by a collection
of state variables and their associated values

m State space represents the full range of
values assumed by the state variables

System State State Space

(Each “point” in the

state space represents
one possible
combination of state
variable values.

\
X =

State
Variables y

L5
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 36

B The state space can be
infinite, although for discrete StteSpace Size
systems we usually have a '
finite space state

m Even 1if finite, the state space

1s often intractably large .
State Variable Range

B State space size often grows
: : State Space
rapidly (exponential or worse) Expiosion Problem
with state variable range

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 37

BU3 - State Space Size --
Example

In an example where we are assigning instruments to 1I/O
channels, the state space consists of all possible relations
from the set of instruments to the set of channels. The
number of these relations is 2 "* ™, where n = number of
instruments and m = number of channels.

Even for a modest-sized problem, say 8 instruments and 5
channels, the state space contains 2 *’ possible elements.
[In this case not all of these states may be reachable since
both the number of instruments per channel and the
number of channels per instrument may be limited. |

L4
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 38

BU4 Model Checkers

| Verrflcatlon systems that perform logic model checking are referred
to as model checkers. Objective is to verify a model over its
corresponding state space (the subset of reachable states).

m Basic function of a model checker is to determine whether a given
finite state model of a system’s requirements satisfies a formula in a
given logic.

B Model checkers are operational as opposed to analytic.

m Models are expressed in a suitable language (e.g. SMV, Murphd,
PROMELA(SPIN)).

B Can be used on suitably restricted “partial spemﬁeatrons :
B Usually, the goal 1s to find errors as opposed to proving correctness.

LS
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 39

BUS - Model Checking and
Computational Tre

Consider two concurrent processes P1 and P2 depicted by the
following state machine diagrams (example adapted from

Callahan*)

X y
Process P1 Process P2

*J. Callahan, Automated Testing via Model Checking, presentation.
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 40

L5

Considered together, the joint process machine has nine states

(the Cartesian product of the state space for P1 with the state
space for P2):

(A,D) (B,.D) (C.D)
(AE) (B.E) (C.E)
(AF) (B.F) (C.F)

State Space for Joint Process Machine

J. Callahan, Automated Testing via Model Checking, presentation.
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 41

L5

BU7 - Model Checking and
Computational Trees (cont’d)

LS5

Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 42

BUS - Model Checking and

Computatlonal Trees (cont d)

Modelcheckers effectlvely and automatlcally explore ALL paths from a star state in a
computational tree. Note we have not listed in the tree any state that was reached in a
prior level. The computational tree will contain repeated (pe‘rhaps infinitely many

times) copies of subtrees. . @
—>
>
. /""@l’ D2
s Dd il
We’ve arbitrarily X ._" @ @
chosen state (A,D)
as the start state for ‘}V@——» @ /

this computational

tree. ‘
L5 \n’
Introa'u Formal Methods, Module 1, Version 1.1, Oct., 1998 43

BU9 - Model Checking and
Ccmputatlonal Trees (cont d)

A strlng of symbols o=s 82 Where each $; 18 chosen from the union of the two
original state machine input alphabets, is called an input trace. Model checkers will
employ input traces that exercise all reachable states.

RS
"*@l'@ 4
./ P Using start state
‘ ' ‘ > @ AD, trace 0 = Xyxy
reaches states BD,

BE, CE, and CF in
sequence.

L5 . @
, ducmg Formal Methods, Module 1, Version 1.1, Oct., 1998 44

BU10 - Approaches for Coping
Wlth the State Explosmn Problem

m Use a symbolic, rather than explicit,

representation of the state space

» a set of states is represented by a logical formula that is
satisfied in a given state if and only if the state 1s a member
of the set

» most widely used representation is known as Ordered Binary
Decision Diagrams (or OBDD’s -- sometimes just BDD’s)

m Use symmetries of the state space to reduce the
number of states to be considered

LS
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 45

the State Explosion Pro

m Use methods to red ation problem to a
series of manageable sub-problems

m Use partial order reduction methods reducing the
size of the checked state space

m Reduce verification problem to a partial
specification, eliminating irrelevant states

L5
Introducing Formal Methods, Module 1, Version 1.1, Oct., 1998 46

